Rice Homeodomain Protein WOX11 Recruits a Histone Acetyltransferase Complex to Establish Programs of Cell Proliferation of Crown Root Meristem.
نویسندگان
چکیده
Shoot-borne crown roots are the major root system in cereals. Previous work has shown that the Wuschel-related homeobox gene WOX11 is necessary and sufficient to promote rice (Oryza sativa) crown root emergence and elongation. Here, we show that WOX11 recruits the ADA2-GCN5 histone acetyltransferase module to activate downstream target genes in crown root meristem. Rice ADA2 and GCN5 genes are highly expressed in root meristem and are shown to be essential for cell division and growth. WOX11 and ADA2-GCN5 commonly target and regulate a set of root-specific genes involved in energy metabolism, cell wall biosynthesis, and hormone response, some of which are known to be important for root development. The results indicate that the recruitment of ADA2-GCN5 by WOX11 establishes gene expression programs of crown root meristem cell division and suggest that permissive chromatin modification involving histone acetylation is a strategy for WOX11 to stimulate root meristem development.
منابع مشابه
The Interaction between Rice ERF3 and WOX11 Promotes Crown Root Development by Regulating Gene Expression Involved in Cytokinin Signaling.
Crown roots are the main components of the fibrous root system in rice (Oryza sativa). WOX11, a WUSCHEL-related homeobox gene specifically expressed in the emerging crown root meristem, is a key regulator in crown root development. However, the nature of WOX11 function in crown root development has remained elusive. Here, we identified a rice AP2/ERF protein, ERF3, which interacts with WOX11 an...
متن کاملThe WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice.
In rice (Oryza sativa), the shoot-borne crown roots are the major root type and are initiated at lower stem nodes as part of normal plant development. However, the regulatory mechanism of crown root development is poorly understood. In this work, we show that a WUSCHEL-related Homeobox (WOX) gene, WOX11, is involved in the activation of crown root emergence and growth. WOX11 was found to be exp...
متن کاملThe WUSCHEL-Related Homeobox Gene WOX11 Is Required to Activate Shoot-Borne Crown Root Development in Rice C W
In rice (Oryza sativa), the shoot-borne crown roots are the major root type and are initiated at lower stem nodes as part of normal plant development. However, the regulatory mechanism of crown root development is poorly understood. In this work, we show that a WUSCHEL-related Homeobox (WOX) gene, WOX11, is involved in the activation of crown root emergence and growth. WOX11 was found to be exp...
متن کاملWOX11 recruits a histone H3K27me3 demethylase to promote gene expression during shoot development in rice
WUSCHEL-related homeobox (WOX) genes are key regulators of meristem activity and plant development, the chromatin mechanism of which to reprogram gene expression remains unclear. Histone H3K27me3 is a chromatin mark of developmentally repressed genes. How the repressive mark is removed from specific genes during plant development is largely unknown. Here, we show that WOX11 interacts with the H...
متن کاملP-209: Decreased Expression of Histone Acetyltransferase CDY1 Gene in Testis Tissue May Lead to Decreased Expression of Transition Protein (TNP) and Protamine (PRM) Genes,Causing Male Infertility
Background: Infertility is a complex medical problem. About 15% of couples are infertile, and male infertility being involved in roughly 50% of the cases. Among these, many cases are associated with a severe impairment of spermatogenesis. During the last stage of spermatogenesis (spermiogenesis), sperm chromatin endures complex modifications in which histones are lost and depositioned with tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 29 5 شماره
صفحات -
تاریخ انتشار 2017